top of page

Publications

​​

  1. Celinskis D, Black CJ, Murphy J, et al. Toward a brighter constellation: multiorgan neuroimaging of neural and vascular dynamics in the spinal cord and brain. Neurophotonics. 2024;11(2):024209. doi:10.1117/1.NPh.11.2.024209

  2. Araujo M, Ghosn S, Wang L, et al. Author Correction: Machine learning polysomnographically-derived electroencephalography biomarkers predictive of epworth sleepiness scale. Sci Rep. 2023;13(1):10601. Published 2023 Jun 30. doi:10.1038/s41598-023-37716-7

  3. Araujo M, Ghosn S, Wang L, et al. Machine learning polysomnographically-derived electroencephalography biomarkers predictive of epworth sleepiness scale [published correction appears in Sci Rep. 2023 Jun 30;13(1):10601. doi: 10.1038/s41598-023-37716-7]. Sci Rep. 2023;13(1):9120. Published 2023 Jun 5. doi:10.1038/s41598-023-34716-5

  4. Black CJ, Saab CY, Borton DA. Transient gamma events delineate somatosensory modality in S1. Preprint. bioRxiv. 2023;2023.03.30.534945. Published 2023 Mar 31. doi:10.1101/2023.03.30.534945

  5. Valsamis H, Baki SA, Leung J, et al. SARS-CoV-2 alters neural synchronies in the brain with more severe effects in younger individuals. Sci Rep. 2023;13(1):2942. Published 2023 Feb 20. doi:10.1038/s41598-023-29856-7

  6. Edhi MM, Heijmans L, Vanent KN, et al. Time-dynamic pulse modulation of spinal cord stimulation reduces mechanical hypersensitivity and spontaneous pain in rats. Sci Rep. 2020;10(1):20358. Published 2020 Nov 23. doi:10.1038/s41598-020-77212-w

  7. Levitt J, Edhi MM, Thorpe RV, et al. Pain phenotypes classified by machine learning using electroencephalography features. Neuroimage. 2020;223:117256. doi:10.1016/j.neuroimage.2020.117256

  8. Black CJ, Allawala AB, Bloye K, et al. Automated and rapid self-report of nociception in transgenic mice. Sci Rep. 2020;10(1):13215. Published 2020 Aug 6. doi:10.1038/s41598-020-70028-8

  9. Davis KD, Aghaeepour N, Ahn AH, et al. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat Rev Neurol. 2020;16(7):381-400. doi:10.1038/s41582-020-0362-2

  10. Levitt J, Saab CY. What does a pain 'biomarker' mean and can a machine be taught to measure pain?. Neurosci Lett. 2019;702:40-43. doi:10.1016/j.neulet.2018.11.038

  11.  Koyama S, LeBlanc BW, Smith KA, et al. An Electroencephalography Bioassay for Preclinical Testing of Analgesic Efficacy. Sci Rep. 2018;8(1):16402. Published 2018 Nov 6. doi:10.1038/s41598-018-34594-2

  12. Levitt J, Nitenson A, Koyama S, et al. Automated detection of electroencephalography artifacts in human, rodent and canine subjects using machine learning. J Neurosci Methods. 2018;307:53-59. doi:10.1016/j.jneumeth.2018.06.014

  13. Koyama S, Xia J, Leblanc BW, Gu JW, Saab CY. Sub-paresthesia spinal cord stimulation reverses thermal hyperalgesia and modulates low frequency EEG in a rat model of neuropathic pain. Sci Rep. 2018;8(1):7181. Published 2018 May 8. doi:10.1038/s41598-018-25420-w

  14. LeBlanc BW, Cross B, Smith KA, et al. Thalamic Bursts Down-regulate Cortical Theta and Nociceptive Behavior. Sci Rep. 2017;7(1):2482. Published 2017 May 30. doi:10.1038/s41598-017-02753-6

  15. Saab CY, Barrett LF. Thalamic Bursts and the Epic Pain Model. Front Comput Neurosci. 2017;10:147. Published 2017 Jan 12. doi:10.3389/fncom.2016.00147

  16. Levitt J, Choo HJ, Smith KA, LeBlanc BW, Saab CY. Electroencephalographic frontal synchrony and caudal asynchrony during painful hand immersion in cold water. Brain Res Bull. 2017;130:75-80. doi:10.1016/j.brainresbull.2016.12.011

  17. LeBlanc BW, Bowary PM, Chao YC, Lii TR, Saab CY. Electroencephalographic signatures of pain and analgesia in rats. Pain. 2016;157(10):2330-2340. doi:10.1097/j.pain.0000000000000652

  18. LeBlanc BW, Lii TR, Huang JJ, et al. T-type calcium channel blocker Z944 restores cortical synchrony and thalamocortical connectivity in a rat model of neuropathic pain. Pain. 2016;157(1):255-263. doi:10.1097/j.pain.0000000000000362

  19. LeBlanc BW, Lii TR, Silverman AE, Alleyne RT, Saab CY. Cortical theta is increased while thalamocortical coherence is decreased in rat models of acute and chronic pain. Pain. 2014;155(4):773-782. doi:10.1016/j.pain.2014.01.013

  20. Saab CY. Pain-related changes in the brain: diagnostic and therapeutic potentials. Trends Neurosci. 2012;35(10):629-637. doi:10.1016/j.tins.2012.06.002

  21. Shields SD, Cheng X, Gasser A, et al. A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis. Ann Neurol. 2012;71(2):186-194. doi:10.1002/ana.22665

  22. Iwata M, LeBlanc BW, Kadasi LM, Zerah ML, Cosgrove RG, Saab CY. High-frequency stimulation in the ventral posterolateral thalamus reverses electrophysiologic changes and hyperalgesia in a rat model of peripheral neuropathic pain. Pain. 2011;152(11):2505-2513. doi:10.1016/j.pain.2011.07.011

  23. LeBlanc BW, Zerah ML, Kadasi LM, Chai N, Saab CY. Minocycline injection in the ventral posterolateral thalamus reverses microglial reactivity and thermal hyperalgesia secondary to sciatic neuropathy. Neurosci Lett. 2011;498(2):138-142. doi:10.1016/j.neulet.2011.04.077

  24. LeBlanc BW, Iwata M, Mallon AP, et al. A cyclic peptide targeted against PSD-95 blocks central sensitization and attenuates thermal hyperalgesia. Neuroscience. 2010;167(2):490-500. doi:10.1016/j.neuroscience.2010.02.031

  25. Saab CY, Shamaa F, El Sabban ME, Safieh-Garabedian B, Jabbur SJ, Saadé NE. Transient increase in cytokines and nerve growth factor in the rat dorsal root ganglia after nerve lesion and peripheral inflammation. J Neuroimmunol. 2009;208(1-2):94-103. doi:10.1016/j.jneuroim.2009.01.011

  26. Saab CY, Hains BC. Remote neuroimmune signaling: a long-range mechanism of nociceptive network plasticity. Trends Neurosci. 2009;32(2):110-117. doi:10.1016/j.tins.2008.11.004

  27. Saab CY, Wang J, Gu C, Garner KN, Al-Chaer ED. Microglia: a newly discovered role in visceral hypersensitivity?. Neuron Glia Biol. 2006;2(4):271-277. doi:10.1017/S1740925X07000439

  28. Saab CY, Waxman SG, Hains BC. Alarm or curse? The pain of neuroinflammation. Brain Res Rev. 2008;58(1):226-235. doi:10.1016/j.brainresrev.2008.04.002

  29. Shaw SK, Owolabi SA, Bagley J, et al. Activated polymorphonuclear cells promote injury and excitability of dorsal root ganglia neurons. Exp Neurol. 2008;210(2):286-294. doi:10.1016/j.expneurol.2007.11.024

  30. Morin N, Owolabi SA, Harty MW, et al. Neutrophils invade lumbar dorsal root ganglia after chronic constriction injury of the sciatic nerve. J Neuroimmunol. 2007;184(1-2):164-171. doi:10.1016/j.jneuroim.2006.12.009

  31. Black JA, Liu S, Hains BC, Saab CY, Waxman SG. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Brain. 2006;129(Pt 12):3196-3208. doi:10.1093/brain/awl216

  32. Owolabi SA, Saab CY. Fractalkine and minocycline alter neuronal activity in the spinal cord dorsal horn. FEBS Lett. 2006;580(18):4306-4310. doi:10.1016/j.febslet.2006.06.087

  33. Hains BC, Saab CY, Waxman SG. Alterations in burst firing of thalamic VPL neurons and reversal by Na(v)1.3 antisense after spinal cord injury. J Neurophysiol. 2006;95(6):3343-3352. doi:10.1152/jn.01009.2005

  34. Hains BC, Saab CY, Waxman SG. Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. Brain. 2005;128(Pt 10):2359-2371. doi:10.1093/brain/awh623

  35. Saab CY, Waxman SG. Potentiation of sural nerve Abeta action potential after neurogenic inflammation. Neuroreport. 2004;15(11):1773-1777. doi:10.1097/01.wnr.0000137076.18387.32

  36. Hains BC, Saab CY, Lo AC, Waxman SG. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI. Exp Neurol. 2004;188(2):365-377. doi:10.1016/j.expneurol.2004.04.001

  37. Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci. 2004;24(20):4832-4839. doi:10.1523/JNEUROSCI.0300-04.2004

  38. Saab CY, Park YC, Al-Chaer ED. Thalamic modulation of visceral nociceptive processing in adult rats with neonatal colon irritation. Brain Res. 2004;1008(2):186-192. doi:10.1016/j.brainres.2004.01.083

  39. Saab CY, Craner MJ, Kataoka Y, Waxman SG. Abnormal Purkinje cell activity in vivo in experimental allergic encephalomyelitis. Exp Brain Res. 2004;158(1):1-8. doi:10.1007/s00221-004-1867-4

  40. Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci. 2003;23(26):8881-8892. doi:10.1523/JNEUROSCI.23-26-08881.2003

  41. Lo AC, Saab CY, Black JA, Waxman SG. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. J Neurophysiol. 2003;90(5):3566-3571. doi:10.1152/jn.00434.2003

  42. Saab CY, Cummins TR, Waxman SG. GTP gamma S increases Nav1.8 current in small-diameter dorsal root ganglia neurons. Exp Brain Res. 2003;152(4):415-419. doi:10.1007/s00221-003-1565-7

  43. Saab CY, Willis WD. The cerebellum: organization, functions and its role in nociception. Brain Res Brain Res Rev. 2003;42(1):85-95. doi:10.1016/s0165-0173(03)00151-6

  44. Saab CY, Cummins TR, Dib-Hajj SD, Waxman SG. Molecular determinant of Na(v)1.8 sodium channel resistance to the venom from the scorpion Leiurus quinquestriatus hebraeus. Neurosci Lett. 2002;331(2):79-82. doi:10.1016/s0304-3940(02)00860-1

  45. Saab CY, Willis WD. Cerebellar stimulation modulates the intensity of a visceral nociceptive reflex in the rat. Exp Brain Res. 2002;146(1):117-121. doi:10.1007/s00221-002-1107-8

  46. Saab CY, Garcia-Nicas E, Willis WD. Stimulation in the rat fastigial nucleus enhances the responses of neurons in the dorsal column nuclei to innocuous stimuli. Neurosci Lett. 2002;327(1):17-20. doi:10.1016/s0304-3940(02)00379-8

  47. Saab CY, Willis WD. Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells. Exp Brain Res. 2001;140(1):122-126. doi:10.1007/s002210100824

  48. Saab CY, Kawasaki M, Al-Chaer ED, Willis WD. Cerebellar cortical stimulation increases spinal visceral nociceptive responses. J Neurophysiol. 2001;85(6):2359-2363. doi:10.1152/jn.2001.85.6.2359

  49. Saadé NE, Kafrouni AI, Saab CY, Atweh SF, Jabbur SJ. Chronic thalamotomy increases pain-related behavior in rats. Pain. 1999;83(3):401-409. doi:10.1016/S0304-3959(99)00123-2

bottom of page